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Abstract. Let P be a polytope and Pλ, λ ≤ 0 an inner parallel body
of P , i.e., the polytope constructed by moving the facets of P inwards
at distance |λ|. We study when Pλ is a summand of P . We characterize
the polytopes P satisfying that Pλ is a summand of Pµ with λ < µ ≤ 0.
Besides, we provide an explicit decomposition of such polytopes using
the so called form bodies of their inner parallel bodies.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets in the Eu-
clidean space Rn. Let Bn be the n-dimensional unit ball and Sn−1 the corre-
sponding unit sphere. The volume of a set M ⊂ Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by voln(M) and its closure by cl(M). For
K ∈ Kn and u ∈ Sn−1, h(K,u) = sup

{
〈x, u〉 : x ∈ K

}
, denotes the support

function of the set K ∈ Kn (see e.g. [11, s. 1.7]).
Let K,L ∈ Kn. L is called a summand of K if there exists M ∈ Kn, such
that K = L+M , where + refers to the usual Minkowski or vectorial addition
of sets in Rn.
Since we mainly consider polytopes, we now introduce the necessary notions
only for polytopes in order to state our main result. All these notions exist
for arbitrary convex bodies and are introduced in Section 2. Let ui ∈ Sn−1,
bi ∈ R, 1 ≤ i ≤ m and P ∈ Kn be the polytope

P = {x ∈ Rn : 〈x, ui〉 ≤ bi, 1 ≤ i ≤ m}

with outer normal vectors ui, 1 ≤ i ≤ m to the facets, i.e., n− 1-faces of P .
Thus none of the inequalities 〈x, ui〉 ≤ bi, 1 ≤ i ≤ m is redundant. Then,
for − r(P ) ≤ λ ≤ 0, the inner parallel body of P at distance |λ| is defined as

Pλ = {x ∈ Rn : 〈x, ui〉 ≤ bi − |λ| , 1 ≤ i ≤ m};
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i.e., Pλ is the polytope which arises by moving inwards the facets of P all
at distance |λ|. Here r(P ) denotes the inradius of P (see Section 2 for the
precise definition). It is natural to ask whether P can be retrieved through
the Minkowski sum of Pλ with another convex body, which obviously, should
be also a polytope. In this paper we study when the inner parallel bodies
Pλ, for − r(P ) ≤ λ ≤ 0, of a given polytope P are summands of P . An
important role in some partial answers plays the so-called form body, that
in the case of the polytope P , is

P 1 = {x ∈ Rn : 〈x, ui〉 ≤ 1, 1 ≤ i ≤ m}.
By U(P ) we denote the set of vectors u ∈ Sn−1 that are normal to facets.
Next we deal with our main results.

Theorem 1.1. Let P be a polytope with inradius r(P ). Pτ is a summand
of Pµ for all τ ≤ µ ≤ 0 if and only if

h(P, u) = h(Pτ , u) +

∫ 0

τ
h((Pµ)1, u)dµ,

for all u ∈ Sn−1.

Moreover, unlike what happens in dimension 2 (see Section 4), there ex-
ist polytopes P all whose inner parallel bodies Pλ, − r(P ) ≤ λ ≤ 0, are
summands of them, but Pλ is not a summand of Pµ for λ < µ < 0.
Furthermore, we provide sufficient and necessary conditions, relying only on
the facets of Pτ +P 1

τ , in order Pτ to be a summand of all Pµ for τ ≤ µ ≤ 0.

Theorem 1.2. Let P be a polytope and − r(P ) ≤ τ ≤ 0. Pτ is a summand
of Pµ for all τ ≤ µ ≤ 0 if and only if U(Pµ + P 1

µ ) = U(Pµ) for τ ≤ µ ≤ 0.

A fundamental tool to address this problem is a criterion of Shephard (see
[12]) that characterizes the polytopes which can be summands of a given one.
This result has been generalized and proven to be equivalent to conditions
having very different flavor, as intersections of translates or monotonicity of
mixed volumes. There is a vast amount of literature dealing with decom-
position of convex bodies. For a complete description of the situation we
refer to Schneider [11, Section 3.2, Notes to Section 3.2] and the references
therein.
The problem of studying when inner parallel bodies of a polytope are sum-
mands of it makes also sense for an arbitrary convex body K. However, the
tools we have used in this work for polytopes seem not to work for general
convex bodies, except for dimension 2, as we shall see in Section 4.
The paper is organized as follows. In Section 2 we introduce the notions
and results which are needed. In Section 3 we collect general results on
inner parallel bodies and summands of polytopes. We devote Section 4 to
dimension 2, where the results are not restricted to polytopes. Finally in
Section 5 we prove Theorems 1.1 and 1.2 as a consequence of a more general
result, namely, Theorem 5.2, and give examples for how the situation differs
from dimension 2.
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2. Background

In this section we introduce all further necessary notions. We provide also
for arbitrary convex bodies the corresponding notions already introduced
for polytopes. The Minkowski difference of two sets K,L ⊂ Rn is defined
as follows:

K ∼ L = {x ∈ Rn : x+ L ⊆ K}.
We notice that (K ∼ L) + L ⊂ K and inequality may be strict.
Let K ∈ Kn. The inradius r(K) of K is the radius of one of the largest balls
which fit inside K, i.e.,

r(K) = sup{r : ∃x ∈ Rn with x+ r Bn ⊂ K}.
For − r(K) ≤ λ ≤ 0 the inner parallel body of K at distance |λ| is the
Minkowski difference of K and |λ|Bn, i.e.,

Kλ := K ∼ |λ|Bn = {x ∈ Rn : |λ|Bn + x ⊂ K} ∈ Kn .
Notice that K− r(K) is the set of incenters of K, usually called kernel of K.
The dimension of K− r(K) is strictly less than n (see [2, p. 59]). The inner
parallel body of K can be defined, equivalently (see [11, Section 3.1]), as

Kλ = {x ∈ Rn : 〈x, u〉 ≤ h(K,u)− |λ| , u ∈ Sn−1}.
For K ∈ Kn, u ∈ Sn−1 and H(K,u) = {x ∈ Rn : 〈x, u〉 = h(K,u)} the
supporting hyperplane to K with outer normal vector u, we denote by
F (K,u) = K ∩ H(K,u) the corresponding face of K cut off by H(K,u).
A vector u ∈ Sn−1 is a 0-extreme normal vector of K, if it cannot be written
as linear combination of two linearly independent normal vectors at the same
boundary point of K. Thus, u is called 0-extreme, if it is the unique normal
vector to F (K,u). Hence, as for polytopes, the set of 0-extreme vectors if
K is denoted by U(K). Minkowski’s Theorem ([11, Corollary 1.4.5]) yields
that

K = {x ∈ Rn : 〈x, u〉 ≤ h(K,u), u ∈ U(K)},
and thus the inner parallel body in fact is

Kλ = {x ∈ Rn : 〈x, u〉 ≤ h(K,u)− |λ| , u ∈ U(K)}.
We also point out that the latter definition of inner parallel body is con-
sistent with the notion of inner parallel body of a polytope provided in the
introduction.
The form body of a convex body K ∈ Kn, denoted by K1, is defined as (see
e.g. [3])

K1 = {x ∈ Rn : 〈x, u〉 ≤ 1, u ∈ U(K)}.
In the following we collect some properties of inner parallel bodies, form
bodies and extreme vectors which will be needed later on. They can be
found in [9, Lemmas 2.4, 2.6, 4.4 and 4.5].

Lemma 2.1. Let K,L ∈ Kn and − r(K) < λ ≤ 0. The following facts hold:

(i) U(Kλ) ⊆ U(K)
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(ii) U(K ∼ L) ⊆ U(K)

(iii) cl(U(K)) = U(K1)

(iv) U(K) ∪ U(L) ⊆ U(K + L)

(v) h(Kλ, u) = h(K,u)− |λ|h(Bn, u) = h(K,u) + λ, for u ∈ U(Kλ)

The following result shows a very close connection between inner parallel
bodies and form bodies for which we refer to Schneider [11].

Theorem 2.2 (Schneider [11, Lemma 3.1.10]). Let K ∈ Kn. Then Kλ is a
dilation of K, for all − r(K) < λ ≤ 0 if and only if K = r(K)K1.

There exist also strong relations between inner parallel bodies, form bodies
and extreme vectors through the so called Riemann-Minkowski integral (see
[4] and [9, Lemma 3.2]). For a convex body K with inradius r(K), the

Riemann-Minkowski integral of (Kλ)1 in − r(K) ≤ λ ≤ 0,
∫ 0
− rK

1
λdλ is the

convex body whose support function is given by

h

(∫ 0

− r
K1
λdλ, u

)
=

∫ 0

− r(K)
h(K1

λ , u)dλ, for all u ∈ Sn−1.

Theorem 2.3 (Sangwine-Yager [9, Lemma 3.2.]). Let K ∈ Kn. Then

K ⊇ K− r(K) +

∫ 0

− r
K1
λdλ.

Equality holds if

(2.1) cl (U(Kλ)) = cl(U(Kλ +K1
λ))

for − r(K) < λ ≤ 0.

Equation (2.1) plays an important role in Theorem 5.2 and consequently
in Theorems 1.1 and 1.2. Furthermore, in dimension two, as we shall see
in Section 4, (2.1) holds for any convex body and the above inclusion is
always an equality. The geometry behind (2.1) is not completely understood.
Sufficient conditions for a convex body to satisfy this condition are not
known. However, for a polytope P , as Theorem 5.2 and Corollary 5.3 show,
this condition is equivalent to a precise decomposition of P using the form
bodies of its inner parallel bodies.
We would like to mention also the following theorem which also deals with
decomposition of convex bodies through their inner parallel bodies.

Theorem 2.4 (Hernández Cifre, Saoŕın Gómez, [8, Theorem 2.2]). Let
K ∈ Kn. Then K = Kλ + |λ|K1 for every − r(K) ≤ λ ≤ 0 if and only if

(2.2) h(K,u) = h(K− r(K), u) + r(K), for all u ∈ U(K)

and clU(K) = U(Kλ +K1) for all − r(K) ≤ λ ≤ 0.
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A convex body K satisfying (2.2) is called a tangential body of K− r(K) +
r(K) Bn. For precise definitions and further information about tangential
bodies we refer to Schneider [11, Section 2.2]. We would like to point out,
that for the above result it is necessary to assume that the body K have
both, Kλ and K1 as summands (cf. Proposition 3.6 and Corollary 3.7).

3. Auxillary results

The following two corollaries are immediate consequences of Theorem 2.2.
A summand of a convex body K is said to be trivial if it is a dilation of K.

Corollary 3.1. If P = r(P )P 1, then all inner parallel bodies of P are
(trivial) summands of P .

A convex body K ∈ Kn is indecomposable if all its summands are trivial,
i.e., dilations of itself. For example, simplicial polytopes or pyramids (see
e.g. [12, Section 15.1]) are indecomposable while simple polytopes (except
for the simplex) are not.

Corollary 3.2. Let P be indecomposable, − r(P ) ≤ τ ≤ 0. Then Pτ is a
summand of P if and only if P = r(P )P 1.

The following criterion gives necessary and sufficient conditions in order a
polytope to be a summand of another one.

Theorem 3.3 (Shepard’s decomposition criterion [12]). Q is summand of
P if and only if the following two conditions hold:

(i) dim(F (P, u)) ≥ dim(F (Q, u)) for every u ∈ Sn−1.
(ii) For every edge F (P, u) of P , it is

vol1(F (P, u)) ≥ vol1(F (Q, u)).

Let P be a polytope and let F be a face of P . The set

N(F ) = cl
(
cone{u ∈ Sn−1 : F (P, u) = F}

)
that consists of all vectors u ∈ Sn−1 that are normal to F is called the
normal cone of F . The poset of all normal cones of P , ordered by inclusion,
is called the normal fan of P , denoted by N (P ). That is for a non-empty
polytope in Rn, N (P ) consists of the normal cones of all faces of P . The
union of all such cones is Rn, which means that N (P ) is a complete fan
and furthermore, the relative interiors of the cones in the normal fan form
a partition of Rn (see [13, Section 7.1] for a more detailed introduction).
Lemma 2.1 (i) provides a relation between the 0-dimensional elements of

N (P ) and N (Pτ ). For the other dimensional cones in N (P ) and N (Pτ ) no
analogous relation holds in general. However, if we ask Pτ to be a summand
of P , using Shephard’s decomposition criterion (Theorem 3.3) the following
well known result can be proved.

Proposition 3.4. If Pτ is a summand of P , then the normal fan of P
is a refinement of the normal fan of Pτ . The converse is not true (see
Proposition 5.1 (iii)).
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If P ∈ Kn is a polytope, U(P ) is the set of outer normal vectors to the facets
of P , which coincide with the 1-dimensional cones in the normal fan. This
ensures that there exists ε > 0 so that, for −ε < λ ≤ 0, U(Pλ) = U(P ), i.e.,
there is a range in (− r(P ), 0] in which the polytopes Pλ have exactly the
same number of facets as P does. Notice that this is no longer true for a
general convex body; see e.g. [9, Figure 2.3].
Using this, we define the following parameters, τj(P ), for j ∈ N, associated
to P .

Definition 3.5. Let τ0(P ) = 0, τ1(P ) = inf{µ ∈ (− r(P ), 0] : U(Pµ) =
U(P )}. Inductively, let τi(P ) = τ1(Pτi−1(P )) = inf{µ ∈ (− r(P ), 0] : U(Pµ) =
U(Pτi−1(P ))}.

Taking into account that P− r(P ) has dimension strictly less than n, Lemma 2.1
(i) and the previous comments, it is clear that there exist only finitely many
(different) τi(P ). Notice, that if the polytope P has no interior points, i.e.,
if its inradius is 0, then τ1(P ) = 0. Observe also that τ1(P ) is not a mini-
mum, i.e., U(Pτ1(P )) 6= U(P ). Indeed τ1(P ) can be described geometrically
as the largest value on the interval (− r(P ), 0] for which Pτ1(P ) has strictly
less facets than P . Hence, τ1(P ) = − r(P ) if and only if

h(P− r(P ), u) = h(P, u)− r(P ), for all u ∈ U(P ).

Next we prove that for λ ∈ [−τ1(P ), 0] there are necessary and sufficient
conditions in order Pλ to be a summand of P and these rely on the form
body of P . Outside this interval, it will be necessary that Pλ, for all λ in at
least some open interval of (− r(P ), 0] are summands of P , in order to prove
our decomposability conditions.

Proposition 3.6. Let τ1(P ) ≤ τ ≤ 0 and let Pτ be a summand of P . Then
P = Pτ + |τ |P 1.

Proof. Let P = {x ∈ Rn : 〈x, ui〉 ≤ bi, 1 ≤ i ≤ m} for ui ∈ Sn−1, bi ∈ R
and 1 ≤ i ≤ m . Then

Pτ = {x ∈ Rn : 〈x, ui〉 ≤ bi − |τ | , 1 ≤ i ≤ m}.

For τ1(P ) < τ ≤ 0, we have that ui ∈ U(Pτ ) for 1 ≤ i ≤ m. Thus, from
Lemma 2.1 (vi) follows that h(P, u) = h(Pτ , u) + |τ |. The continuity of the
support function ensures that this relation holds for τ = τ1(P ) too.
Let Q be so that Q+Pτ = P . Then Q is the Minkowski difference of P and
Pτ and therefore we can write

Q = {x ∈ Rn : 〈x, ui〉 ≤ h(P, ui)− h(Pτ , ui), 1 ≤ i ≤ m}
= {x ∈ Rn : 〈x, ui〉 ≤ |τ | , 1 ≤ i ≤ m}
= |τ |P 1

for any τ1(P ) ≤ τ ≤ 0 where we have implicitly used Lemma 2.1 (ii), i.e.,
U(Q) = U(P ∼ Pλ) ⊆ U(P ). �
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Proposition 3.6 provides a slight improvement of Theorem 2.4, namely, it is
not necessary to ask for the precise decomposition of P , but just for Pτ to
be a summand of P for all − r(P ) ≤ τ ≤ 0.

Corollary 3.7. Let P ∈ Kn be a polytope with r(P ) = τ1(P ). The following
conditions are equivalent:

(i) Pτ is a summand of P for all − r ≤ τ ≤ 0.
(ii) U(P ) = U(Pτ + P 1) for all − r(P ) ≤ τ ≤ 0.

Proof. Since τ1(P ) = r(P ), from Proposition 3.6 we obtain that P = Pτ +
|τ |P 1 for all − r(P ) ≤ τ ≤ 0, it is clear that U(P ) = U(Pτ + P 1) for all
− r(P ) ≤ τ ≤ 0.
For the converse, since τ1(P ) = r(P ), u ∈ U(P ) = U(Pτ ) for all− r(P ) < τ ≤
0, it follows that h(P, u) = h(Pτ , u) + |τ |h(P 1, u) for u ∈ U(P ). Condition
U(P ) = U(Pτ + P 1) yields that in fact P = Pτ + |τ |P 1.

�

We notice, that the normal cones of P and P 1 are, in general, no refinements
one of the other (see [9, Figure 2.2]).

Corollary 3.8. If Pτ is a summand of P for some τ1(P ) ≤ τ ≤ 0 then the
normal fan of P is a refinement of the normal fan of P 1. The converse is
not true (see Figure 4).

If all the inner parallel bodies of P in the range τ1(P ) ≤ τ ≤ 0 are summands
of P , we get from Proposition 3.6 that P = Pτ1(P ) +τ1(P )P 1. This allows to
provide more information on the normal fans of P and Pτ for τ1(P ) < τ ≤ 0,
improving Proposition 3.6. For, we need the following lemma.

Lemma 3.9. Let P = Pτ + |τ |P 1 for some τ1(P ) ≤ τ ≤ 0. Then Pµ =(
1− |µ||τ |

)
P + |µ|

|τ |Pτ for all τ ≤ µ ≤ 0.

Proof. Let P = Pτ + |τ |P 1 for some τ1(P ) ≤ τ ≤ 0. With

h(Pµ, u) + |µ|h(P 1, u) = h(Pµ + |µ|P 1, u) ≤ h(P, u)

= h(Pτ + |τ |P 1, u) = h(Pτ , u) + |τ |h(P 1, u)

we follow Pµ ⊂ Pτ + (|τ | − µ|)P 1 ⊂ Pµ, which implies that Pµ = Pτ + (|τ |+
µ)P 1 and P = Pµ + |µ|P 1 for τ ≤ µ ≤ 0. Thus,

|µ|
|τ |
Pτ +

(
1− |µ|
|τ |

)
P =

|µ|
|τ |
Pτ +

(
1− |µ|
|τ |

)(
Pµ + |µ|P 1)

=
|µ|
|τ |
Pτ +

(
|τ | − |µ|
|τ |

)
Pµ +

|µ|
|τ |
(
|τ | − |µ|

)
P 1

=
|µ|
|τ |

[
Pτ +

(
|τ | − |µ|

)
P 1
]

+
|τ | − |µ|
|τ |

Pµ

=
|µ|
|τ |
Pµ +

|τ | − |µ|
|τ |

Pµ = Pµ.
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�

Remark 3.10. The proof of Lemma 3.9 shows in particular, that, if Pτ is
a summand of P for some τ1(P ) ≤ τ ≤ 0, then Pµ is a summand of P as
well for all τ ≤ µ ≤ 0.

Together with Proposition 3.4 we can say more about the normal fan of a
polytope, some of whose inner parallel bodies are summands of it:

Corollary 3.11. If Pτ is a summand of P for all τ1(P ) ≤ τ ≤ 0, then the
normal fans of P and Pτ coincide for all τ1(P ) < τ ≤ 0.

4. Decompositions in dimension 2

In this section we prove that every convex polygon can be written as the
sum of its kernel and the Riemann-Minkowski integral of the form bodies of
its inner parallel bodies. In order to do it, we establish first the following
lemma. Although its proof can be deduced from Lemma 3.2.3 in [11], we
include it here for completeness.

Lemma 4.1. Let P be a convex polygon, − r(P ) ≤ τ ≤ 0. Then Pτ is a
summand of P .

Proof. We use Shephard’s criterion. The first condition is obvious. For the
second condition, let u ∈ Sn−1 such that F (P, u) is an edge of P . Then
u ∈ U(P ) ⊃ U(Pτ ). If u /∈ U(Pτ ), F (Pτ , u) is a vertex an the condition is
fulfilled. Let otherwise u ∈ U(Pτ ). Then with h(Pτ , u) = h(P, u) + τ (see
Lemma 2.1) and F (Pτ , u) + |τ |Bn ⊂ P it follows, that

F (P, u) ⊃ (F (Pτ , u) + |τ |Bn) ∩H(P, u)

= (F (Pτ , u) + |τ |Bn) ∩ (H(Pτ , u) + |τ |u)

= F (Pτ , u) + |τ |u,

which implies the second condition. �

Notice that, the above lemma implies, in particular, that if Pτ is a summand
of P , then Pτ is also a summand of Pµ for all τ ≤ µ ≤ 0, because from
the definition of inner parallel bodies it is clear that (Pτ ) = (Pµ)τ−µ. In
Proposition 5.1 and Corollary 5.3 we provide examples of polytopes P all
whose inner parallel bodies are summands of them, i.e., Pµ is a summand of
P , for − r(P ) ≤ µ ≤ P , but Pµ is not a summand of Pτ for some µ < τ < 0.
In the next result we prove an explicit decomposition of any convex polygon
P through some of its inner parallel bodies Pτ , − r(P ) ≤ τ ≤ 0. Although
this result is a consequence of Theorem 2.3 (see also the comments below
Theorem 2.3 about the planar case), we provide the proof for the case of
polygons since the same argument works for the general case in the proof of
Theorem 5.2.



DECOMPOSITION OF POLYTOPES USING INNER PARALLEL BODIES 9

Theorem 4.2. Let P be a convex polygon, let i ∈ N with τi+1(P ) ≤ τ ≤
τi(P ). Then

P = Pτ + |τ − τi(P )|(Pτi(P ))
1 +

i∑
j=1

|τj(P )− τj−1(P )|(Pτj−1(P ))
1.

Proof. Let τi+1(P ) ≤ τ ≤ τi(P ). Then by Lemma 4.1, we get that Pτ is a
summand of Pτi(P ). By Proposition 3.6, we have

Pτi(P ) = Pτ + |τi(P )− τ |P 1
τi(P ).

Again by Lemma 4.1 and Proposition 3.6, Pτi(P ) is a summand of Pτi−1(P )

and

Pτi−1(P ) = Pτi(P ) + |τi−1(P )− τi(P )|P 1
τi−1(P )

= Pτ + |τi(P )− τ |P 1
τi(P ) + |τi−1(P )− τi(P )|P 1

τi−1(P ).

Repeating this argument i− 1 times, yields the theorem. �

Since P 1
τ is constant for τ ∈ (τi+1(P ), τi(P )], this theorem is in fact equiv-

alent to the following result in which the numbers τi(P ) are replaced by a
Riemann-Minkowski integral.

Corollary 4.3. Let P be a convex polygon, − r(P ) ≤ τ ≤ 0. Then

P = Pτ +

∫ 0

τ
(Pµ)1dµ.

5. Decompositions in dimension n

First we prove that, unlike in dimension 2, for n ≥ 3 inner parallel bodies
of a convex body may not all be summands of it. This fact will amount to
a drastically different behavior of the summands of a polytope.

Proposition 5.1. Let n ≥ 3.

(i) There are n-dimensional polytopes, all of whose inner parallel bodies
are summands of them.

(ii) There are n-dimensional polytopes, some of whose inner parallel
bodies are summands of them.

(iii) There are n-dimensional polytopes, non of whose inner parallel bod-
ies are summands of them.

Proof. For c ∈ [20
3 , 12] let

P (c) =

x ∈ R3 :

±12x1 + 35x3 ≤ 432,
±12x2 + 5x3 ≤ 60,

x3 ≥ 0,
x3 ≤ c


(see Figure 1. To ensure perspicuity, the x1-axis is dilated by 1

2 in all pictures

in this proof). The inradius is r(P (c)) = 10
3 . The inner parallel bodies for
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Figure 1. P (20
3 ), P (9) and P (12); (to ensure perspicuity,

the x1-axis is dilated by 1
2 in all pictures in this proof)

− r(P ) ≤ τ ≤ 0 are given by

P (c)τ =

x ∈ R3 :

±12x1 + 35x3 ≤ 432 + 37τ,
±12x2 + 5x3 ≤ 60 + 13τ,

x3 ≥ 0− τ,
x3 ≤ c+ τ


and

P (c)− 10
3

= conv

{(
±16, 0,

10

3

)>}
.

Furthermore, τ1(P (c)) = −60−5c
8 .

Altogether, we have

P (c)τ = conv


±(36− 6τ)

±(5− 3
2τ)

τ

 ,

±(36− 35
12c−

1
6τ)

±(5− 5
12c−

2
3τ)

c− τ


for τ ∈ (τ1(P (c)), 0] and

P (c)τ = conv


±(36− 6τ)
±(5− 3

2τ)
τ

 ,

±(1 + 9
2τ)

0
12− 13

5 τ


for τ ∈ (10

3 , τ1(P (c))].
It is clear that all inner parallel bodies satisfy the first condition in Shep-
hard’s theorem. To check the second condition, the length of the upper
edges with direction (1, 0, 0)> is of importance.

(i) Let c ∈ [−20
3 ,−

48
7 ]. Then it is easy to check, that P (c)τ satisfies

the second condition in Shephard’s theorem for all τ ∈ [−10
3 , 0] (see

Figure 2).
(ii) Let c ∈ (−48

7 , 12). Then it is easy to check, that P (c)τ satisfies the

second condition in Shephard’s theorem for all τ ∈ [−70
9 + 35

54c, 0] and
P (c)τ does not satisfy the second condition in Shephard’s theorem
for all τ ∈ [−10

3 ,−
70
9 + 35

54c) (see Figure 3).
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Figure 2. P (20
3 ) and P (20

3 ) 40
21

Figure 3. P (9), P (9) 20
21

and P (9) 50
21

(iii) Let c = 12. Then for all τ ∈ [−10
3 , 0), P (c)τ does not satisfy the

second condition in Shephard’s theorem (see Figure 4).

Figure 4. P (12) and P (12) 10
21

�

Next we will prove Theorems 1.1 and 1.2 which are consequences of the
following more general result.

Theorem 5.2. Let − r(P ) ≤ µ1 < µ2 ≤ 0. The following statements are
equivalent:

(i) Pτ is summand of Pτ̃ , for all µ1 ≤ τ ≤ τ̃ ≤ µ2.
(ii) h(Pµ2 , u) = h(Pτ , u) +

∫ µ2
τ h((Pµ)1, u)dµ, for all u ∈ Sn−1 and for

all µ1 ≤ τ ≤ µ2.
(iii) U(Pτ + (Pτ )1) = U(Pτ ), for all µ1 ≤ τ ≤ µ2.
(iv) d

dµh(Pµ, u)|µ=τ = h((Pτ )1, u), for all µ1 ≤ τ ≤ µ2 for which the

derivative exists for all u ∈ Sn−1.
(v) u 7→ d

dµh(Pµ, u)|µ=τ is a support function, for all µ1 ≤ τ ≤ µ2 for

which the derivative exists for all u ∈ Sn−1.
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Notice that Theorem 1.1 is exactly the step (i) ⇔ (ii) and Theorem 1.2 is
(i) ⇔ (iii), in both cases for µ2 = 0.

Proof. We show (i) ⇔ (ii), (iv) ⇔ (v), and (i) ⇒ (iii) ⇒ (iv) ⇒ (ii).

• (i) ⇔ (ii): The proof is analogous to the corresponding proofs in
dimension 2 (See Theorem 4.2 and Corollary 4.3).
• (i) ⇒ (iii): Let µ1 ≤ τ ≤ µ2, and let i ∈ N, such that τi+1(P ) ≤
τ ≤ τi(P ). Then by Proposition 3.6 and (i) we have Pτi(P ) =

Pτ + |τi(P ) − τ |(Pτi(P ))
1 = Pτ + |τi(P ) − τ |(Pτ )1. Thus U(Pτ ) =

U(Pτi(P )) = U(Pτ + (Pτ )1).
• (iii) ⇒ (iv): This follows directly from Theorem 2.3.
• (iv) ⇒ (ii): This is immediate by integrating from τ to µ2.
• (iv) ⇔ (v): Assume (v) and let µ1 ≤ τ ≤ µ2, such that the de-

rivative exists. Then d
dµh(Pµ, ·)|µ=τ is a support function. Hence,

let Rτ be the convex body with support function d
dµh(Pµ, ·)|µ=τ .

Since Pµ is a polytope, h(Pµ, u) is linear in u in all full-dimensional
cones in the normal fan N (Pµ) and thus, the same is true for

u 7→ d
dµh(Pµ, ·)|µ=τ . Since support functions of polytopes are char-

acterized by being piecewise linear support functions of convex bod-
ies (see [6, Exercise 3.1.19.]), Rτ is a polytope and its normal fan
is only coarser than that of Pτ , i.e., U(Rτ ) ⊂ U(Pτ ) = U(P 1

τ ). To
show (iv) it remains to show h(Rτ , u) = h(P 1

τ , u) for all u ∈ U(P 1
τ ),

i.e., d
dµh(Pµ, ·)|µ=τ = 1 for all u ∈ U(P 1

τ ). This is true since for

u ∈ U(P 1
τ ) we have h(Pµ, u) = h(P, u) +µ and thus d

dµh(Pµ, u) = 1.

The converse direction is trivial.

�

We would like to remark that this result contains the converse of Theorem 2.3
for the case of polytopes, namely, it provides necessary conditions for a
polytope to have equality in Theorem 2.3.
The assertion in the following corollary is a direct consequence of Theo-
rem 5.2 as well as Theorem 2.3.

Corollary 5.3. Let U(Pτ + (Pτ )1) = U(Pτ ) for all − r(P ) ≤ τ ≤ 0. Then
Pτ is a summand of P for all − r(P ) ≤ τ ≤ 0. The converse is not true!

Proof. By Theorem 5.2 (or Theorem 2.3), U(Pτ + (Pτ )1) = U(Pτ ) for all
− r(P ) ≤ τ ≤ 0 implies, that Pτ is summand of Pτ̃ , for all − r(P ) ≤ τ ≤
τ̃ ≤ 0 which proves the assertion. For the converse, let P (c) be as in proof
of Proposition 5.1 and let c ∈ (−20

3 ,−
48
7 ]. Then P (c)τ is a summand of

P (c) for all τ ∈ [−10
3 , 0]. However, P (c)τ is not a summand of P (c)τ(P (c)),

whenever τ ≤ τ(P (c)) and thus by Theorem 5.2, U(Pτ + (Pτ )1) = U(Pτ )
cannot be fulfilled for all − r(P ) ≤ τ ≤ 0. �
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6. Moving facets outwards

In this section, we have a brief look at a similar question, if we move facets
of the polytope outwards.
For a polytope P = {x ∈ Rn : 〈x, ui〉 ≤ bi, 1 ≤ i ≤ m} with unit normals
to the facets ui ∈ Sn−1 and τ > 0 we denote by Pτ = {x ∈ Rn : 〈x, ui〉 ≤
bi + τ, 1 ≤ i ≤ m}. We remark that this notion differs from the so-called
outer parallel body of a convex body. Nonetheless with this notation, we
have that (Pτ )µ = Pτ+µ for all τ > − r(P ) and µ > −(r(P ) + τ). This also
implies, that τi(Pτ ) = τi(P ) + τ for all τ > τ1(P ) and r(Pτ ) = r(P ) + τ for
all τ > − r(P ).
In the case of positive τ , the combinatorial properties of Pτ are easier than
for negative τ :

Lemma 6.1. Let τ > 0. Then U(P ) = U(Pτ ).

Proof. Assume w.l.o.g. F (Pτ , u1) is not a facet, i.e., 〈x, ui〉 ≤ bi + τ is re-
dundant. Hence there are αi > 0, 2 ≤ i ≤ m with

∑m
i=2 αiui = u1 and∑m

i=2 αi(bi + τ) ≤ b1 + τ . Thus
∑m

i=2 αibi + (m − 1)τ ≤ b1 + τ which is∑m
i=2 αibi ≤ b1 − (m− 2)τ ≤ b1. This is a contradiction, since F (P, u1) is a

facet of P . �

We want to answer the question, if and when P is a summand of Pτ , τ > 0.
Since, as Lemma 6.1 shows, Pτ has the same facet normals as P for all τ > 0,
the situation is altogether similar and based on the situation in the interval
[τ1(P ), 0].

Theorem 6.2. The following statements are equivalent:

(i) P is a summand of Pτ for some τ > 0.
(ii) P is a summand of Pτ for all τ ≥ 0.
(iii) P is a nested summand of Pτ for all τ ≥ 0, i.e., Pµ is a summand

of Pτ for all τ > µ ≥ 0.
(iv) U(P + P 1) = U(P ).
(v) Pτ = Pµ + (τ − µ)P 1 for all τ > µ ≥ 0.

Proof. We show (i) ⇒ (iv) ⇒ (ii) ⇒ (iii) ⇒ (v) and the step from (v) ⇒ (i)
is obvious.

• (i)⇒ (iv): Let P be a summand of Pτ . By Lemma 6.1 τ1(Pτ ) < −τ
and thus by Proposition 3.6 we have Pτ = (Pτ )−τ +τP 1

τ = P +τP 1

which implies (iv) since U(P ) = U(Pτ ) = U(P + P 1).
• (iv) ⇒ (ii): This follows from Theorem 2.3.
• (ii) ⇒ (iii): Let P be a summand of both, Pτ and Pµ with τ > µ >

0. Then by Lemma 6.1 and Proposition 3.6, we have h(Pτ , u) =
h(P, u) + τh(P 1, u) and h(Pµ, u) = h(P, u) + µh(P 1, u) for all u ∈
Sn−1. Subtraction of both equations yields h(Pτ , u) = h(Pµ, u) +
(τ − µ)h(P 1, u) for all u ∈ Sn−1 which implies (iii).
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• (iii) ⇒ (v): Let τ > µ ≥ 0. Then Pµ = (Pτ )µ−τ is a summand
of Pτ . Since 0 > µ − τ ≥ −τ > τ1(Pτ ) we get by Proposition 3.6
Pτ = (Pτ )µ−τ + |µ− τ |P 1

τ = Pµ + (τ − µ)P 1.

�
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